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In this sequel to previous work of A. Stokolos and W. Trebels (1999, J. Approx.
Theory 98, 203�222) we indicate at the example of the Gauss�Weierstrass and the
Abel�Poisson means the sharpness of some results obtained there. This is achieved
by modifying methods of K. I. Oskolkov (1977, Math. USSR-Sb. 32, 489�514) and
A. A. Soljanik (1986, Ph.D. Thesis, Odessa) developed for the periodic case.
� 1999 Academic Press

Key Words: moduli of continuity; rate of almost everywhere convergence;
counterexamples; Hardy spaces.

1. INTRODUCTION AND MAIN RESULTS

In [11] some contributions are given to the following problem. Suppose
that a function f has a certain smoothness property in L p(R)-norm. What
is a good�natural rate of convergence by which certain approximation pro-
cesses of convolution type converge a.e. towards f ? In this sequel to [11]
we discuss the sharpness of the results obtained there. We modify methods
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used by Oskolkov [6, 7] in a similar circle of problems and by Soljanik
[9] in the periodic case; a substantial role is played by a lemma due to
Caldero� n (see, e.g., [10, p. 442]). The same method also gives the
sharpness of Soljanik's [9] results in the Hardy classes H p(R2

+), 1�p<�.
First introduce the L p-modulus of continuity of a function f # L p(R),

1�p<�, by

|( f, t)p= sup
|h|<t

&2h f &Lp(R) , 2h f (x)= f (x+h)& f (x).

Further, consider continuous increasing sub-additive functions |(t) on
(0, �) with limt � 0+ |(t)=0; define classes of smoothness H |

p (R) by

H |
p (R)=[ f # L p(R) : |( f, t)p�C|(t)].

By Wt ( f ) we denote the Gauss�Weierstrass means (observe the different
normalization of the parameter t), defined on L2(R) by

Wt ( f )(x)=|
R

e&t 2 |!|2f� (!) eix! d!, f� (!)=
1

2? |
R

f (x) e&i!x dx.

Corollary A (see [11]). If f # H |
p (R), 1�p<�, and =>0 is

arbitrary then, for t � 0+ and almost all x # R, there holds

Wt ( f )(x)& f (x)

=ox(|(t)){
(log log(1�t))1�p+=, |(t)=t(log(1�t))*, *>0

\log
1
t+

1�p+=,
|(t)=t*, 0<*<1

(log log(1�t))1�p+=, |(t)=\log
1
t+

&*

, *>0.

Part (b) of Theorem 1 below will show that it is impossible to choose
==0 in Corollary A. Our main result deals with approximation processes
(Tmt

)t>0 of convolution type

Tmt
f (x)=|

R
m(t |!| ) f� (!) eix! d!, f # L2(R), (1)

where m # L�(0, �). So the Gauss�Weierstrass integral is generated by
m(u)=e&u2

.
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Theorem 1. (i) Let 8 # L1(R), 8� (!)=m( |!| ) , be an even kernel with

|
R

8(x) dx=1, |
R

|x8(x)| dx<�,

the radial majorant 8� (x)#sup | y| �|x| |8( y)| belonging to L(R).

(ii) Let |(t) be a modulus of continuity such that |(t)�t A �, t � 0+.
Define $k in the following way

$0=1, $k+1=min {$ : max \ |($)
|($k)

;
$|($k)
$k |($)+=

1
2= , k=0, 1, ... .

(2)

(iii) Let w(t) be a nondecreasing positive function such that |(t)�w(t)
is nondecreasing.

(a) (See [11, Theorem 2.1].) If

:
�

k=1
\|($k)

w($k)+
p

<�, (3)

then, for every function f # H |
p (R), 1�p<�, there holds

Tmt
f (x)& f (x)=ox(w(t)) a.e., t � 0+. (4)

(b) If the series in (3) diverges, i.e., if

:
�

k=1 \
|($k)
w($k)+

p

=�, (5)

and if additionally 8�0, then there exists an f # H |
p (R), 1�p<�, such

that

lim sup
t � 0+

|Tmt
f (x)& f (x)|

w(t)
=� a.e. (6)

Remark 1. Theorem 1 is in the spirit of results due to K. I. Oskolkov
[6] concerning Steklov means of periodic functions. We recall the following
crucial property of the Oskolkov sequence [$k] (see [6; 11, Lemma E])

C&1 |($)� :
�

k=0

|($k) min {1,
$

$k=�C|($), $ # (0, 1], (7)

(for some absolute constant 0<C<�) which in fact can be taken as
definition, while (2) is an explicit realization of such sequences. This choice
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of [$k] allows to handle smoothness near the optimal |*(t)=t in contrast
to the [%k]'s from Theorem 3 and Corollary 5 below.

It is interesting to discuss in how far the hypothesis 8� (x)#
sup | y|�|x| |8( y)| # L1(R) can be modified��see in this respect, e.g.,
[5, Chap. 10].

If one compares the two parts of Theorem 1 it becomes clear that for
positive approximation processes condition (3) cannot be weakened in this
setting. Let us look at the examples given in [11, Corollary 2.1.1]: By a
result of B. Kuttner (see [4]), the Riesz typical means generated by m(u)=
(1&u#):

+ are positive means provided 0<#<2 and :�a(#) where a(#) is
a strictly increasing function, continuous on (0, 2) with 0<a(0+)<1,
a(1)=1, and a(2&)=�. Thus, if :>1 and 1<#<2, Theorem 1 applies
(see [11, Corollary 2.1.1]). Also, due to B. Kuttner, the Abel�Cartwright
means of order #, 0<#�2, generated by m(u)=e&u#

, are positive so that
for #>1 we have another example for Theorem 1. In particular, we can
state the following corollary.

Corollary 1. One cannot improve the estimates in Corollary A by
choosing ==0.

The Abel�Poisson means (Pt f )t>0 ,

Pt ( f )(x)=|
R

e&t |!|f� (!) eix! d!, f # L2(R),

though positive, do not fall under the scope of Theorem 1. But some results
concerning the pointwise approximation behavior of Pt can be obtained
from the theory of Hardy spaces H p(R2

+), 1�p<�. These are defined as
the set of functions F(z) holomorphic in the upper half-plane with

&F& p
H p(R2

+)#sup
y>0

|
R

|F(x+iy)| p dx<�.

It is well known [10, p. 127] that the boundary values limy � 0+

F(x+iy)=F(x) exist almost everywhere for elements from H p(R2
+),

belong to L p(R) and that &F&p=&F&H p(R2
+) . As modulus of continuity of

F(z) # H p(R2
+) we define the modulus of continuity of its boundary value

F(x), further the smoothness classes H |
p (R2

+) by

H |
p (R2

+)=[F(z) # H p(R2
+) : |(F, t)p�C|(t)].

Theorem 2. Assume that the hypotheses (ii) and (iii) of Theorem 1
hold.
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(a) (See A. A. Soljanik [9].) If (3) is satisfied then, for every
F # H |

p (R2
+), 1�p<�, we have

F(x+it)&F(x)=ox(w(t)) a.e., t � 0+. (8)

(b) If (5) holds, then there exists an F # H |
p (R2

+), 1�p<�, such that

lim sup
t � 0+

|F(x+it)&F(x)|
w(t)

=� a.e. (9)

Remark 2. A. A. Soljanik [9] has in fact shown that Part (a) of
Theorem 2 is true for all p>0. Theorem 2 implies sharp estimates for the
Abel�Poisson means: If f # L p(R), 1�p<�, then we have that the func-
tion F= f+iHf (where Hf denotes the Hilbert transform of f ) is the
boundary value of some function from H p(R2

+) if and only if Hf # L p(R).
In this case F(x+iy)=Py(F )(x). Furthermore, if 1<p<�, then the
Hilbert transform is a bounded operator on L p(R), which implies that
C&1|(F, t)p�|( f, t)p�C|(F, t)p for some constant 0<C<� inde-
pendent of t. Thus the set of boundary values of analytic functions belonging
to H |

p (R2
+), 1<p<�, coincides with H |

p (R) and Theorem 2 has the
following corollaries (for the direct estimates see [11]).

Corollary 2. Let 1<p<� and w(t) be a nondecreasing positive
function such that |(t)�w(t) is nondecreasing and (3) is true. Then, for every
function f # H |

p (R) there holds

Pt ( f )(x)& f (x)=ox(w(t)) a.e., t � 0+. (10)

The estimate is sharp in the sense of Theorem 2.

Corollary 3. If f # H |
p (R), 1<p<�, if |(t) t&s, s>0, is an increasing

function with

|
1

0 \
|(t)

ts +
p dt

t
<� (11)

then, for almost all x # R,

Pt f (x)& f (x)=ox(ts), t � 0+.

If (11) does not hold then there exists a function f # H |
p (R) such that

lim sup
t � 0+

|Pt f (x)& f (x)| t&s=� a.e.
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In the case p=1 the function F(x)= f (x)+iHf (x) is not necessarily
integrable. Nevertheless, for the bulk of L1-functions, in a certain sense
``modestly'' smooth, we have that 2hHf # L1(R) and that the modulus of
continuity of Hf can be estimated by that of f (see [2, p. 61]), namely

|(Hf; u)1�C \|
u

0

|( f, t)1

t
dt+u|

�

u

|( f, t)1

t2 dt+ . (12)

Obviously, this implies the corresponding estimate for |(F, t)1 by |( f, t)1 .

Corollary 4. Let |(t) be a modulus of continuity with |(t)�t A �,
t � 0+.

(a) Assume that

|
1

0

|(t)
t

dt<�,

that |~ (t) is a further modulus of continuity satisfying

|
u

0

|(t)
t

dt+u |
�

u

|(t)
t2 dt�C|~ (u),

that w(t) is a nondecreasing positive function such that |~ (t)�w(t) is
nondecreasing, and

:
�

k=1

|~ ($k)
w($k)

<�.

Then, for all f # H |
1 (R), we have

Pt f (x)& f (x)=ox(w(t)) a.e., t � 0+.

(b) Suppose that |(t) is a bounded function such that |(t)�t is
decreasing and that

lim
t � 0+

|(2t)
|(t)

=2. (13)

Suppose further that w(t) satisfies condition (iii) of Theorem 1 and (3) then,
for all f # H |

1 (R), we have

Pt f (x)& f (x)=ox(w(t) log(1�t)) a.e., t � 0+.

The assumption | being bounded implies in practice of course no loss of
generality since for any f # L1(R) trivially |( f; t)1�2 & f &1 . Condition (13)
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means that | is near to the best possible case |*(t)=t. To illustrate this,
consider |(t)=t(log(1�t)):, 0<t�1�2, :>0, | extended appropriately to
t>1�2. Then, for every f # H |

1 (R), there holds

Pt ( f )(x)& f (x)=ox(t(log(1�t)):+1 (log log(1�t))1+=) a.e., t � 0+.

Corollary 4, Part (a) immediately follows from Theorem 2. To realize
that this is also the case for Part (b) we note the two estimates: (i) that by
the hypothesis (13)

|
2&n

0
|(t)�t dt�C :

�

k=n

|(2&k)�C|(2&n)

therefore,

|
u

0
|(t)�t dt�C|(u),

and (ii), since |(t)�t is assumed to be decreasing, that

u |
�

u
|(t)�t2 dt�u |

1

u
|(t)�t2 dt+Cu |

�

1
t&2 dt

�Cu|(u)�u |
1

u
1�t dt+Cu�C|(u) log(1�u).

Let us note, that Corollary 4 does not cover the case of ``bad'' moduli,
e.g., those of logarithmic type. This type falls under the scope of the
following

Theorem 3. (i) Let |(t) be a modulus of continuity which satisfies the
doubling condition

lim sup
t � 0+

|(2t)
|(t)

<2.

(ii) Let w(t) be a nondecreasing function such that |(t)�w(t) is
nondecreasing.

(a) (see [11].) If %k is defined by |(%k)=2&k and if

:
�

k=1

|(%k)
w(%k)

<�, (14)
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then, for all f # H |
1 (R) , there holds

Pt f (x)& f (x)=ox(w(t)) a.e., t � 0+. (15)

(b) If %k is defined as in (a) and if the series in (14) diverges, i.e., if

:
�

k=1

|(%k)
w(%k)

=�, (16)

then there exists a function f # H |
1 (R) with

lim sup
t � 0+

|Pt f (x)& f (x)|
w(t)

=� a.e. (17)

Theorem 3 yields the following corollary (for the positive part see [11]).

Corollary 5. If f # H |
1 (R) and =>0 is arbitrary then, for t � 0+ and

almost all x # R,

Pt ( f )(x)& f (x)

=ox(|(t)) {\
log

1
t+

1+=

, |(t)=t*, 0<*<1

(log log(1�t))1+=, |(t)=\log
1
t+

&*

, *>0.

This result is sharp in so far as it does not remain true for ==0.

There is only to prove Theorems 1, 2, 3 which is done in Sections 2, 3, 4.

2. PROOF OF THEOREM 1

Proof. By the results in [11] there is only to show Part (b). To this end
we modify Oskolkov's approach [6] for the Steklov means on the one-
dimensional torus appropriately. We construct a function f as the sum of
simple nonnegative polygonal functions fk , f =�k # L fk . By a lemma of
Caldero� n on shifts (see, e.g., [10, p. 442]) we can distribute the fk 's on the
real line such that, in fact, almost all points x are contained in infinitely
many supports of the fk 's. Additionally we distribute the fk 's in such a way,
that for almost all x the sets of those indexes for which fk(x){0 are quite
thin (see (28)). The estimates concerning the smoothness of f are not
difficult due to the remarkable properties of the sequence (2).
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For the estimate of the difference Tmt
f (x)& f (x), for fixed x, we select

one term, say the one corresponding to fs , which gives the main contribu-
tion. The contributions corresponding to the fk 's, k<s, are then relatively
small due to the small parameter in the approximation and the rest of the
series gives a small contribution due to the lacunarity of the L� norms of
the elements of series.

We first assume that the kernel 8 is decreasing on [0, �) and will
discard of this additional assumption later. Further we note two simplifica-
tions.

(i) It is sufficient to prove the existence of some f # H |
p (R) with

lim sup
t � 0+

|Tmt
f (x)& f (x)|

w(t)
>0 a.e. on R (18)

instead of (6). For if w~ (t) satisfies (5), we may choose w(t) such that (5)
holds and additionally w(t)�w~ (t) A �, t � 0+, thus by (18)

lim sup
t � 0+

|Tmt
f (x)& f (x)|

w~ (t)

=lim sup
t � 0+

|Tmt
f (x)& f (x)|

w(t)

w(t)

w~ (t)
=+� a.e. on R.

(ii) Without loss of generality we may assume that

�1=1, �k�k, �k :=\w($k)
|($k)+

p

. (19)

For, by hypothesis, [1��k] is a non-increasing sequence with

:
�

k=1

1
�k

=�. (20)

Now (ii) holds if we can show that

:
�

k=1

min \1
k

;
1

�k +=�. (21)

Indeed, if 1��k=o(1�k) then (21) follows immediately from (20). Otherwise
there exists a lacunary sequence ki A �, ki+1�2ki such that 1��ki

�:�ki

with some positive :�1. Since the sequence [�k] is monotone we obtain

1
�j

�
:
2

1
j
,

ki

2
� j�ki ,
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in particular, min(1�j, 1��j)�:�2j for these j, whence

:
�

k=1

min \1
k

;
1

�k +�
:
2

:
�

i=1

:
ki �2< j�ki

1
j
�

:
2

:
�

i=1

1
k i

}
k i

2
=�.

With the numbers [$k] as in (2) we now define

rk=max[m # Z+ : 2m$k�1��k], k=1, 2, ..., (22)

and consider the subset K of Z+ ,

K=[k : �k�k2]. (23)

It follows from (20) that

:
k # K

rk $k=�. (24)

Let Fk=(ak ; bk] be some intervals such that

|Fk |=bk&ak=2rk $k .

Put a2=0 and ak+1=bk if bk<1 and ak+1=0 otherwise. Thus we have
correctly defined the intervals Fk for k�2. Let sm A � be such that asm

=0
and consider

Ek= .
rk&1

&=1 _ak+&2$k&
8(1)

2
$k ; ak+&2 $k+

8(1)
2

$k& .

Then

|Ek |=2(rk&1)
8(1)

2
$k�Crk $k , :

k # K

|Ek |=�

by (24). Let

L= .
�

m=1

Lm , Lm #[k # K : s2m�k<s2m+1], E*m= .
k # Lm

Ek . (25)

Then obviously

:
k # L

|Ek |=� (26)

249RATE OF ALMOST EVERYWHERE CONVERGENCE



or �k � L |Ek |=�. Without loss of generality assume (26) and rewrite it as

:
�

m=1

|E*m |= :
k # L

|Ek |=�.

By the Caldero� n lemma (see, e.g., [10, p. 442]), there exist numbers !m

such that

lim sup
m

E*!m
_ E#\,

�

j=1

.
�

m= j

E*!m+_ E=R, (27)

where E*!m
=E*m&!m are translates of E*m and E is some set of measure

zero. Denote by {m the translation {m( } )#( }&!m) and define

F {
k #{m(Fk)=(:k ; ;k], s2m�k<s2m+1 .

Further, for x # R introduce a subset of L by Kx=[k # L : F {
k % x]. By

the choice of F {
k , if k # Kx and l # Kx , l>k, there follows

s2j�k<s2j+1<s2m�l<s2m+1

for some j and m which implies that 1�� l
s=k 2rs $s . Then by (19)

1� :
l

s=k

2rs $s� :
l

s=k

�&1
s � :

l

s=k

1�s�|
1�k

1�(l&1)

dx
x

=ln
l&1

k
.

Thus we have established the following important property of Kx : there
exists a k0�1 such that for any x # R

l, k # Kx , l>k, implies l�2k, k�k0 . (28)

Define

Jk :=[x : x=:k+s2$k , s=0, 1, ..., rk]/F {
k ,

polygonal functions

fk(x) :=�1�p
k

|($k)
$k {dist(x, Jk)

0,
if x # F {

k

if x � F {
k ,

and finally f by f =�k # L fk .
We show that f # H |

p (R). It is clear that the fk 's are absolutely
continuous functions with

fk(x)=0 if x � F {
k , sup

x # F {
k

| fk(x)|�|($k) �1�p
k , (29)
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and

f $k(x)=0 if x � F {
k , sup

x # F{
k

| f $k(x)|�
|($k)

$k
�1�p

k . (30)

It follows from (29) and (30) that

|( fk ; $)���1�p
k min \|($k)

$k
$, |($k)+ .

Furthermore, (see (22))

|( fk ; $)p�|( fk ; $)� (2 |F {
k | )1�p=|( fk ; $)� (4rk $k)1�p

�2 min \|($k)
$k

$, |($k)+ .

Since Oskolkov's sequence [$k] has the property (7) we have f # H |
p (R).

We come to the estimate of Tmt
f (x)& f (x). Take t=$s with s # L; set

Kc
x=L"Kx . Then

Tmt
f (x)& f (x)= :

k<s, k # K
c
x

Tmt
fk(x)+ :

k<s, k # Kx

(Tmt
fk(x)& fk(x))

+(Tmt
fs(x)& fs(x))

+ :
k>s, k # Kx

(Tmt
fk(x)& fk(x))

+ :
k>s, k # K

c
x

Tmt
fk(x).

Since the first and the last sum of the right hand side are nonnegative, there
holds

Tmt
f (x)& f (x)�II(x)&|I(x)|&|III(x)|,

where

I(x)# :
k<s, k # Kx

(Tmt
fk(x)& fk(x)),

II(x)#Tmt
fs(x)& fs(x),

III(x)# :
k>s, k # Kx

(Tmt
fk(x)& fk(x)).
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We first show that

I(x)+III(x)=o(w(t)) a.e. on R (31)

and then

II(x)�Cxw(t) a.e. on R. (32)

We start with the estimate of III(x). By the properties (23), (29), and (28)
for large enough s

|III(x)|� :
k>s, k # Kx

|
R

| fk(x+h)& fk(x)| 8t (h) dh

� :
k>s, k # Kx

2|($k) �1�p
k �C :

k>s, k # Kx

k2|($k)

�C|($s+1) :
k # Kx , k>s

k22s&k+1

�C|($s+1) :
k>2s

k22k&s+1=o(|($s)).

Next consider I(x). By (23), (30), and hypothesis (i)

|I(x)|� :
k<s, k # Kx

|
R

| fk(x+h)& fk(x)| 8t (h) dh

� :
s�2

k=2

|($k)
$k

�1�p
k |

R
h8t (h) dh

= :
s�2

k=2

|($k)
$k

�1�p
k t |

R
h8(h) dh

�C$s�1�p
s :

s�2

k=2

2k&s |($s)
$s

�C$ss2 |($s)
$s

:
s�2

k=2

2k&s=o(|($s)),

thus (31) is established. Now let us turn to II(x). Obviously,

8t (x)=
1
t

8 \x
t +�

28(1)
2t

/[0, 1] \ |x|
t +#28(1) Kt (x),

K(x)=
1
2

/[0, 1]( |x| ).
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Direct calculations show that

Kt V fs(x)= 1
2 |($s) �1�p

s , x # [:s+$s ; ;s&$s],

thus

Tmt
fs(x)#8t V fs(x)�8(1) |($s) �1�p

s for x # [:s+$s ; ;s&$s].

(33)

Since E*!m
=�s # Lm

E {
s , where

E {
s #{x # [:s+$s ; ;s&$s] : dist(x, Js)�

8(1)
2

$s= ,

we obtain for all x # E {
s that

fs(x)=�1�p
s

|($s)
$s

dist(x, Js)��1�p
s

|($s)
$s

8(1)
2

$s=
8(1)

2
�1�p

s |($s)

and therefore, combining the two estimates,

Tm$s
fs(x)& fs(x)�

8(1)
2

�1�p
s |($s)=

8(1)
2

w($s), x # E {
s . (34)

Since every point from lim supm E*!m
belongs to infinitely many E {

s then
it follows from (31), (34), and (27) that for almost all x # R

lim sup
t � 0+

|Tmt
f (x)& f (x)|

w(t)
�

8(1)

2
.

Finally let us show how to modify the proof to avoid the monotonicity
of the kernel. Let 9(x)=8(x) /[0, 1]( |x| ) and 9* denote the non-increas-
ing rearrangement of the function 9. Without loss of generality we may
assume that 9*(1)>0. If we set G=[x : 9(x)>9*(1)] we obviously have
that |G|=1. For 0<t<1 set Gt=[x : x�t # G]. Then

Gt /[&t; t] and |Gt |=t.

Using the standard notation 9t (x)=1�t9(x�t) there holds 9t (x)�8t (x)
and

9t (x)�9*(1)�t, x # Gt .
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Then, for arbitrary x # [:s+$s ; ;s&$s], we have

8t V fs(x)�9t V fs(x)=|
t

&t
9t ( y) fs(x& y) dy

�|
Gt

9t ( y) fs(x& y) dy�
9*(1)

t |
Gt

fs(x& y) dy.

Obviously x& y # [x&t; x+t] for any y # Gt . Hence

8t V fs(x)�
9*(1)

t
inf |

e
fs( y) dy,

where the infimum is taken over all measurable sets e/[x&t; x+t] with
|e|=t. Now let us introduce the function

,s(x)=
w($s)

$s
($s&|x| ) /[0, 1]( |x|�$s).

It is clear that fs is the ``finite'' periodic extension of ,s , that
[x&t; x+t]/supp( fs) has length 2t and coincides with the length of
supp(,s) (in some sense ``one period'' of fs), thus (see [1, pp. 44�46])

inf |
e

fs( y) dy=|
t

&t
,s( y) dy& sup

|E |=t
|

E
,s( y) dy

=|
2t

0
,s*( y) dy&|

t

0
,s*( y) dy

=|
2t

t
,s*( y) dy=

w($s) $s

4
.

Hence

8tV fs(x)�
9*(1)

t
w($s) $s

4
=

9*(1)
4

w(t)

since in our case t=$s . This estimate can be used instead of (33) (observe
w($s)=�1�p

s |($s)). Now change the definition of the set Es by setting

E� s= .
rs&1

&=1
_as+&2$s&

9*(1)
8

$s , as+&2$s+
9*(1)

8
$s& .
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This implies corresponding changes in the definition of the set E {
s ,

E� {
s#{x # [:s+$s ; ;s&$s] : dist(x, Js)�

9*(1)
8

$s= ,

and for x # E� {
s there holds

fs(x)�
9*(1)

8
�1�p

s |($s).

Hence

Tm$s
fs(x)& fs(x)�

9*(1)
8

w($s)=
9*(1)

8
w(t)

and Theorem 1 is proved.

3. PROOF OF THEOREM 2

This example is in the spirit of the previous one; at the same time the
corresponding results of Soljanik [8, 9] for the torus have to be carried
over to the real line. Observe that the construction of Soljanik's example
F=� Fk as a series of analytic functions Fk is technically quite complicated
with a long derivation. The reason is to be seen there in the fact that when
estimating F(x+it)&F(x) for t � 0+ at a point x two Fk 's may have
comparable contributions with different signs. The application of the
Caldero� n lemma allows us to separate the influence of the Fk 's at x yielding
a substantial simplification.

As in Section 2 it is sufficient to prove the existence of some F # H |
p (R2

+)
with

lim sup
t � 0+

|F(x+it)&F(x)|
w(t)

>0 a.e. on R (35)

and to assume that (19) is true.
Suppose that the numbers [$k] are given by (2) and that q is a fixed

positive integer which will be specified later. Take K as in (23). Define

rk=max[m # Z+ : qm$k�1��k], k=1, 2, ... (36)
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and observe that �1�p
k �rk � 0, in particular r&1

k � 0, for k � � since by
[6] 2$k+1�$k . Define for k�2 intervals Ik=(:k ; ;k]#(ak&$k�1�p

k ;
bk+$k �1�p

k ], where bk&ak=qrk $k , in the following way: Set :2=0 and
:k+1=;k if ;k<1 and :k+1=0 otherwise. Let sm A � be such that :sm

=0
and consider

Ek= .
rk&1

&=1

[ak+(&q&1) $k ; ak+(&q+1) $k].

Then, by (24),

|Ek |=2(rk&1) $k , :
k # K

|Ek |=�.

Let L, Lm , and E*m be given by (25) and assume (26) to hold. Then, again
by the Caldero� n lemma, there exist numbers !m such that (27) is true.

Denote by {m the translation {m( } )#( } &!m) and define

I {
k #{m(Ik), s2m�k<s2m+1 .

Since now the distribution of I {
k is fixed we may denote it again by the

same letters, i.e. assume without loss of generality that they are still in the
original positions, so I {

k=(:k ; ;k]. If for x # R we now introduce
Kx=[k # L : I {

k % x] we again have the important property (28).
Let us define a sequence of complex numbers [zj, k] rk

j=1 by

zj, k=ak+ jq$k&i$k , so Rzj, k=ak+ jq$k (37)

and for every k # K set

Fk(z)=w($k) :
rk

j=1
\ $k

zj, k&z+
2

, z # C, Iz>&$k .

We note that Fk restricted to the real line is bounded,

&Fk&��Cpw($k) :
rk

j=1

$ 2
k

( jq$k)2�Cpw($k) (38)

and, therefore,

&Fk&p�&Fk&� \|x # 3Ik

dx+
1�p

+\|x � 3Ik

|Fk(x)| p dx+
1�p

�Cp|($k)+ } } }
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since |Ik |r�&1
k rrk $k (see the definition (19) of �k). Also

\|x � 3Ik

|Fk(x)| p dx+
1�p

�w($k) $ 2
k :

rk

j=1
\|x � 3Ik

dx
|z j, k&x|2p+

1�p

�Cpw($k) rk$ 2
k \|x�|Ik|

dx
($ 2

k+x2) p+
1�p

�Cp|($k) �1�p
k rk$ 2

k |Ik | 1�p&2.

�Cp|($k)�rk=o(|($k)),

hence

&Fk&p�Cp|($k). (39)

Further

|F $k(x)|�Cpw($k) :
rk

j=1

$ 2
k

( jq$k)3=Cp
w($k)
q3$k

:
�

j=1

j&3=Cp, q
w($k)

$k

whence

&F $k&��Cp, q
w($k)

$k
. (40)

If x � Ik then

|Fk(x)|�Cpw($k) :
rk

j=1

$ 2
k

($k+ jq$k+$k�1�p
k )2

�Cp
w($k)

q2 :
�

j=1

( jq+�1�p
k )&2

�Cp, qw($k)(�1�p
k )&1=Cp, q|($k)

and

&Fk /(Ik)c &��Cp, q|($k). (41)

Also

|F $k(x)|�Cpw($k) :
rk

j=1

$ 2
k

($k+ jq$k+$k�1�p
k )3

�Cp
w($k)
q3$k

:
�

j=1

( jq+�1�p
k )&3

�Cp, q
w($k)

$k
(�1�p

k )&2�Cp, q
|($k)

$k
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and

&F $k/(Ik)c &��Cp, q
|($k)

$k
. (42)

Now define F=�k # L Fk . In view of (2) and (19) the estimates (38) and
(39) imply that F is bounded analytic in R2

+ and belongs to H p(R2
+). We

show that F # H |
p (R2

+).
Choose $s+1<h�$s . Then

|(F, h)p� :
k�s, k # L

|(Fk , h)p+2 :
k>s, k # L

&Fk &p

� :
k�s, k # L

|(Fk , h)p+Cp|($s)

by (2) and (39). Now

&Fk(x+h)&Fk(x)&p�\|x # 5Ik

|Fk(x+h)&Fk(x)| p+
1�p

+\|x � 5Ik

|Fk(x+h)&Fk(x)| p+
1�p

#I1+I2 .

By (40)

I1�h &F $k &� \|x # 5Ik

dx+
1�p

�Cphw($k) $ &1
k �&1�p

k �Cp h|($k) $ &1
k .

Further,

I2�Cp hw($k) $ 2
k :

rk

j=1
\|x � 5Ik

dx
|zj, k&x&!j |

3p+
1�p

with some 0�!j<h�$k . Since x+!j � 3Ik we have

\|x � 5Ik

dx
|zj, k&x&! j |

3p+
1�p

�Cp \||x|�|Ik |

dx
x3p+

1�p

�Cp�3&1�p
k .

Hence

I2�Cpw($k) $ 2
k hrk�3&1�p

k =Cp h
|($k)

$k

1
r2

k

�Cph
|($k)

$k
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and thus |(Fk , h)p�Cph|($k) $ &1
k . Since

:
k�s, k # L

|(Fk , h)p�Cp, qh :
k�s

|($k) $ &1
k �Cp, qh|($s) $ &1

s �Cp, q|(h)

we obtain

|(F, h)p�Cp, q|(h),

i.e., F # H |
p (R2

+).
Next we examine the behavior of F(x+it)&F(x). Take t=$s with

s # L. Then

|F(x+it)&F(x)|�|Fs(x+it)&Fs(x))|& :
k<s, k # L

|Fk(x+it)&Fk(x)|

& :
k>s, k # L

|Fk(x+it)&Fk(x)|.

We discuss the contributions of these terms. First we have

:
k<s, k # L

|Fk(x+it)&Fk(x)|= :
k<s, k # Kx

|Fk(x+it)&Fk(x)|

+ :
k<s, k # K

c
x

|Fk(x+it)&Fk(x)|

#71+72

where again Kc
x=L"Kx . Then, by (28) and (23),

71� :
k<s, k # Kx

$s &F $k &��Cp, q$s :
k�s�2

|($k) �1�p
k $ &1

k

�Cp, q$s
|($s)

$s
s2 :

k�s�2

2k&s

�Cp, qs22&s�2|($s)=o(|($s))

and

72� :
k<s, k # L

$s &F $k /(Ik)c &��Cp, q $s :
k<s

|($k)
$k

�Cp, q |($s).

Combining these two estimates we have for sufficiently large s

:
k<s, k # L

|Fk(x+it)&Fk(x)|�Cp, q |($s). (43)

259RATE OF ALMOST EVERYWHERE CONVERGENCE



Analogously, we decompose

:
k>s, k # L

|Fk(x+it)&Fk(x)|= :
k>s, k # Kx

|Fk(x+it)&Fk(x)|

+ :
k>s, k # K

c
x

|Fk(x+it)&Fk(x)|

#71+72.

Then, by (28), (23), and (38),

71�2 :
k>s, k # Kx

&Fk &��Cp, q :
k�2s

w($k)

�Cp, q|($s) :
k�2s

2s&kk2�p�Cp, q |($s) s22&s=o(|($s))

and by (41)

72� :
k>s, k # K

c
x

&Fk /cIk
&��Cp, q :

k>s

|($k)�Cp, q |($s).

Thus, for sufficiently large s,

:
k>s, k # L

|Fk(x+it)&Fk(x)|�Cp, q|($s) (44)

(recall that we have set t=$s , s # L). Therefore, as a consequence of (43)
and (44), we have that

|F(x+it)&F(x)|�|Fs(x+it)&Fs(x)|+O(|($s)). (45)

For x # Es with |Rz j, s&x|�$s there follows

|Fs(x+it)&Fs(x))|�w($s) \ $ 2
s

|zj, s&x|2&
$ 2

s

|zj, s&x&it| 2

& :
| j&n| �1

$ 2
s

|zn, s&x|2& :
| j&n|�1

$ 2
s

|zn, s&x&it|2+
#w($s)(A&B&C&D).

But it is easy to see that A&B�1�4 and D�C. Finally, by (37),

C� :
| j&n|�1

$ 2
s

|R(zn, s&x)|2� :
| j&n|�1

$ 2
s

( |Rzn, s&Rzj, s |&|Rzj, s&x| )2

� :
| j&n|�1

$ 2
s

(q |n& j | $s&$s)
2�2 :

�

n=1

$ 2
s

|(qn&1) $s | 2�cq&2.
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Now choose q such that cq&2�1�16. Then

|Fs(x+it)&Fs(x)|�w($s)�8

which together with (45) implies that for the given x

|F(x+it)&F(x))|� 1
8w($s)+O(|($s))= 1

8w($s)+o(w($s))

from which (18) follows and Theorem 2 is proved.

4. PROOF OF THEOREM 3

The proof of Part (a) is a simple consequence of the more general
theorem from [11] which for the convenience of the reader we formulate
in the instance of the Abel�Poisson means.

Theorem B. Let |(t) be a modulus of continuity and define %k such that
|(%k)=2&k. Then, for every nondecreasing function w(t) with |(t)�w(t)
nondecreasing and

7# :
�

j=1

2& jc j \ :
�

k=1

|(%k)
w(2& j%k)+<� (46)

and for every function f # H |
1 (R), the estimate (15) holds, where cj are any

positive numbers such that ��
j=1 1�cj converges.

Since without loss of generality we may assume that |(2t)�Q|(t)
uniformly in 0<t<1 for some Q<2, (14) clearly implies (46) because

7� :
�

j=1

2& jc j \ :
�

k=1

Q j|(2& j%k)
w(2& j%k) +� :

�

j=1

Q j 2& jcj \ :
�

k=1

|(%k)
w(%k)+

and Part (a) is proved.
Let us turn to the proof of Part (b). It is sufficient to prove (17) with

positive right sides (see the argument at the beginning of the proof of
Theorem 1). Set q#Q�2<1 and recall that |(%k)=2&k. Obviously
2%k+1�%k for arbitrary |(t), so

|(%k)
%k

�
|(2%k+1)

2%k+1

�q
|(%k+1)

%k+1
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yielding

:
m

k=1

|(%k)
%k

�Cq
|(%m)

%m
, (47)

|(%k)
%k

�qk |(%2k)
%2k

. (48)

Further, we repeat the construction of the function f from the proof to
Theorem 1 with the only difference that we replace $k by %k . We again
show that f # H |

1 (R). For %m+1<h�%k by (47) and (48) we have

|( f, h)1� :
k�m, k # L

|( fk ; h)1+2 :
�

k>m, k # L

& fk &1

�C :
k�m, k # L

|( fk ; h)� �&1
k +C :

�

k=m+1

|(%k)

�Ch :
m

k=1

|(%k)
%k

+C|(%m+1)

�Cq \h
|(%m)

%m
+|(%m+1)+

�Cq|(h),

hence f # H |
1 (R).

Now choose t=%s and estimate III(x), I(x) and II(x) being generated in
the same way as in the proof of Theorem 1. Then

|III(x)|� :
k>s, k # Kx

|
R

| fk(x+h)& fk(x)| Pt (h) dh

� :
k�2s

2|(%k) �k�C2|(%2s) �2s�C2&2ss2=o(|(t)). (49)

Concerning the estimate of I(x) we have

|I(x)|� :
k<s, k # Kx

\||h|�t22s
+|

|h|�t22s+ | fk(x+h)& fk(x)| Pt (h) dh

#71+72 .
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By (47) and (48) there follows

71�t :
k<s�2

|(%k) �k

%k
|

|h|�t22s

h
t

Pt (h) dh

�Cts2 :
k<s�2

|(%k)
%k

|
|h|�22s

h dh
1+h2�Cts3 :

k<s�2

|(%k)
%k

�Cts3 |(%s�2)
%s�2

�Cts3qs�2 |(%s)
%s

=Cs3qs�2|(%s)=o(|(t)), (50)

72� :
k<s�2

|(%k) �k |
|h|�t22s

Pt (h) dh

�Cs2 |
|h| �22s

1
1+h2 dh :

k<s�2

|(%k)�Cs22&2s=o(|(t)). (51)

Summarizing, by (49)�(51) there holds

I(x)+III(x)=o(|(t)), t � 0+. (52)

Finally we note that the estimate II(x) is the same as that in Theorem 1:

Pt fs(x)�P(1) |(%s) �s , x # [:s+%s ; ;s&%s],

which implies that

Pt fs(x)& fs(x)�
P(1)

2
�s|(%s)=

P(1)
2

w(%s), x # E {
s . (53)

Thus, a combination of (52) and (53) yields

lim sup
t � 0+

|Pt f (x)& f (x)|
w(t)

�
P(1)

2
a.e. on R

and Theorem 3 is completely proved.
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